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Streak breakdown caused by a spanwise inflectional instability is one phase of the
following transition scenarios, which occur in plane Poiseuille and Couette flow. The
streamwise vortex scenario is described by

(SV) streamwise vortices =⇒ streamwise streaks =⇒
streak breakdown =⇒ transition.

The oblique wave scenario is described by

(OW) oblique waves =⇒ streamwise vortices =⇒ streamwise streaks =⇒
streak breakdown =⇒ transition.

The purpose of this paper is to investigate the streak breakdown phase of the above
scenarios by a linear stability analysis and compare threshold energies for transition
for the above scenarios with those for transition initiated by Tollmien–Schlichting
waves (TS), two-dimensional optimals (2DOPT), and random noise (N) at subcritical
Reynolds numbers.

We find that if instability occurs, it is confined to disturbances with streamwise
wavenumbers α0 satisfying 0 < αmin < |α0| < αmax . In these unstable cases, the
least stable mode is located near the centre of the channel with a phase velocity
approximately equal to the centreline velocity of the mean flow. Growth rates for
instability increase with streak amplitude. For Couette flow streak breakdown is
inhibited by mean shear. Using the linear stability analysis, we determine lower
bounds on threshold amplitude for transition for scenario (SV) that are consistent
with thresholds determined by direct numerical simulations.

In the final part of the paper we show that the threshold energies for transition
in Poiseuille flow at subcritical Reynolds numbers for scenarios (SV) and (OW)
are two orders of magnitude lower than the threshold for transition initiated by
Tollmien–Schlichting waves (TS) and an order of magnitude lower than that for
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(2DOPT). Scenarios (SV) and (OW) occur on a viscous time scale. However, even
when transition times are taken into account, the threshold energy required for
transition at a given time for (SV) and (OW) is lower than that for the (TS) and
(2DOPT) scenarios at Reynolds number 1500.

1. Introduction
Despite more than a century of research and much progress, transition to turbulence

is still not completely understood – even in relatively simple flows such as plane
Poiseuille and Couette flow.

In the non-dimensionalized geometry channel flow is between infinite horizontal
plates at y = −1 and y = 1. All distances are non-dimensionalized by the half-channel
height, h, and all velocities by the difference between the wall and centreline velocities,
Vd. We define the Reynolds number as R = hVd/ν, where ν is the kinematic viscosity.
Poiseuille and Couette flow have non-dimensionalized velocity profiles U = 1 − y2

and U = y, respectively.
Traditionally, a first step in investigating transition is linear stability analysis. The

Navier–Stokes equations are linearized about the laminar flow and solutions growing
exponentially in time are sought (Drazin & Reid 1981). Linear stability analysis
predicts that plane Poiseuille flow is stable for R < 5772 (Orszag 1971) and plane
Couette flow is stable for all Reynolds numbers (Romanov 1973).

However, transition experiments show that plane Poiseuille flow undergoes transi-
tion to turbulence for R as low as 1000 (Patel & Head 1969) and for plane Couette
flow the transitional Reynolds number is in the range 325 6 R 6 370 (Lundbladh
& Johansson 1992; Tillmark & Alfredsson 1992; Dauchot & Daviaud 1995a). The
precise path to transition depends on a number of factors, including the background
noise environment (Morkovin & Reshotko 1990; Reshotko 1994). The discrepan-
cies between experiments and linear stability analysis have led to much research on
nonlinear theories.

One such theory is the secondary instability theory of Tollmien–Schlichting (TS)
waves (see for example Klebanoff, Tidstrom & Sargent 1962; Orszag & Patera 1983;
Bayly, Orszag & Herbert 1988; Herbert 1988). This transition scenario is shown
schematically as

(TS) 2D TS wave =⇒ 2D state =⇒ 2D state breakdown =⇒ transition.

The usual initial condition is a finite-amplitude TS wave, the eigenfunction of
the Orr–Sommerfeld equation with the greatest growth rate. The finite-amplitude TS
wave evolves nonlinearly into a two-dimensional equilibrium state in Poiseuille flow
if R > 2900. For R < 2900 in Poiseuille flow and all Reynolds numbers in Couette
flow the two-dimensional state decays. The two-dimensional state is linearly unstable
to three-dimensional disturbances. This secondary instability is active at Reynolds
numbers as low as ≈ 1000 in Poiseuille and Couette flows.

While this transition scenario agrees qualitatively and quantitatively with exper-
iments where a two-dimensional TS wave is introduced in the flow via a vibrating
ribbon (see the reviews by Bayly et al. (1988) and Herbert (1988)), it does not seem
to completely describe natural transition in plane channel flows. First, natural tran-
sition is three-dimensional from the outset (Klingmann 1992). Secondly, as we show
here, at subcritical Reynolds numbers the energy of the TS wave required to initiate
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Figure 1. Counter-rotating streamwise vortices in Couette flow taken from Trefethen et al. (1993).

transition is greater than the energy of other three-dimensional disturbances which
lead to transition. Finally, the TS waves are no longer secondarily unstable for R less
than approximately 1000 in plane Couette flow, whereas transition can occur at much
lower Reynolds numbers.

Recently, there has been an intense re-examination of the linearized Navier–Stokes
equations. Linear stability implies that the disturbance energy of sufficiently small
perturbations to the laminar flow decays to 0 as t → ∞. But for finite times the
energy of disturbances may grow linearly by as much as O(R2) before decaying
(Boberg & Brosa 1988; Kim & Moser 1989; Gustavsson 1991; Butler & Farrell 1992;
Reddy & Henningson 1993). For a given streamwise and spanwise wavenumber one
can determine a disturbance, called an optimal, which yields the greatest transient
linear growth. In channel flows, the optimals which yield the most disturbance growth
are independent, or nearly independent, of the streamwise coordinate. Physically,
transient growth results from the redistribution of streamwise momentum by small
velocity perturbations in the direction normal to the shear. Mathematically, transient
growth can be explained by the fact that the linearized Navier–Stokes operator
has non-orthogonal eigenfunctions. An overview of recent work can be found in
review articles (Trefethen et al. 1993; Henningson 1995). Experiments and numerical
simulations indicate that transient growth mechanisms play a fundamental role in the
initial stages of transition in channel and pipe flows (Klingmann 1992; Schmid &
Henningson 1992; Henningson, Lundbladh & Johansson 1993; Mayer & Reshotko
1997).

In this paper, we present two scenarios in which transition is initiated by optimal
disturbances in plane Poiseuille and plane Couette flow. As in the (TS) scenario, a
secondary instability occurs. An array of streamwise streaks periodic in the spanwise
direction is the unstable flow configuration.

First, we consider transition initiated by streamwise vortices – the optimals with
no streamwise dependence. We focus on streamwise vortices because they yield the
most transient linear growth and because they are ubiquitous features in many shear
flows. Schematically, the (SV) scenario is

(SV) streamwise vortices =⇒ streamwise streaks =⇒
streak breakdown =⇒ transition.

This route to turbulence occurs in a number of flow geometries including flow above
a concave wall and curved channel flow; we discuss these further in § 2. These flows
are linearly unstable and the least-stable mode is in the form of streamwise vortices.
The streamwise vortices are no longer unstable eigenmodes in plane channel flows,
but they have the greatest potential for transient growth, suggesting that transition
may be initiated by relatively low-energy disturbances.

We present an example of scenario (SV) in Couette flow. Figure 1 shows the initial
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Figure 2. Streaks and their breakdown in Couette flow. The flow is in the x-direction. The plots
show contours of the streamwise velocity in the plane y = 0. The contours start at −0.5 and have
spacing 0.2. (a) The field at t = 30, consisting of flow moving to the left (dashed contours) and right
(solid contours). (b) At t = 60 the flow is undergoing an instability. In this simulation transition
occurs at t ≈ 67.

disturbance, an array of counter-rotating vortices periodic in the spanwise z-direction
plus streamwise-dependent noise of ≈ 1% of the vortex energy. We emphasize that
transition cannot take place in the absence of streamwise-dependent structures. Let x
denote the streamwise direction and y the wall-normal direction. The vortices create
streamwise streaks of high- and low-speed fluid by the lift-up mechanism (Landahl
1975), as shown in figure 2. High (low)-speed fluid is advected downwards (upwards)
by the vortices as shown in figure 2(a). If the streak amplitude is sufficiently large,
the streaks break down, as shown in figure 2(b). In this simulation transition occurs
at t ≈ 67. However, streak breakdown need not yield transition.

The streak breakdown is similar to a Kelvin–Helmholtz instability. As the vortices
evolve, the streamwise velocity profile U(y, z) of the streaks develops inflection points
in both the normal y- and spanwise z-directions; see figure 3. The main conclusion
of recent work is that the streak breakdown is primarily a spanwise inflectional
instability.

The second route to turbulence we consider begins with a pair of optimal oblique
waves. The oblique waves are chosen so that they each grow linearly via the tran-
sient growth mechanism. The pair of growing waves interact nonlinearly to create
streamwise-independent structures including streamwise vortices. Schematically, the
oblique wave (OW) scenario is

(OW) oblique waves =⇒ streamwise vortices =⇒ streamwise streaks =⇒
streak breakdown =⇒ transition.

Except for the first stage, this route to turbulence is similar to (SV). This scenario has
been investigated in Poiseuille flow (Schmid & Henningson 1992; Schmid, Lundbladh
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Figure 3. Plot (a) Contours of the streamwise velocity U(y, z) at t = 30 in the simulation described in
figure 2 in the absence of noise. The contour values from bottom to top are −0.8,−0.6,−0.4, . . . , 0.8;
negative contours are dashed, positive are solid, and the zero contour is dotted. (b) The spanwise
streak velocity profile at the centreline, U(0, z). The circles are the inflection points.

& Henningson 1994; Elofsson & Alfredsson 1994) and in various other flow geome-
tries, including incompressible boundary layers (Joslin, Streett & Chang 1993; Berlin,
Lundbladh & Henningson 1994), compressible boundary layers (Fasel & Thumm
1991; Chang & Malik 1994), and compressible shear layers (Gathmann, Si-Ameur &
Mathey 1993).

Transition to turbulence at subcritical Reynolds numbers requires a finite-amplitude
disturbance to the laminar solution. The threshold energy is defined to be the minimum
initial disturbance energy for transition. Comparing the threshold energies gives a
measure of the likelihood that a particular scenario occurs in a slightly disturbed
flow. In previous work the threshold for transition for scenarios (SV) and (OW)
in Poiseuille and Couette flow was approximated by direct numerical simulations
(Kreiss, Lundbladh & Henningson 1994; Lundbladh, Henningson & Reddy 1994).
For (SV), the threshold energy scales like R−2 for 500 6 R 6 4000 in Couette flow and
R−7/2 for 1500 6 R 6 5000 in Poiseuille flow. For scenario (OW) the thresholds are
approximately R−5/2 and R−7/2 for Couette and Poiseuille flow, respectively. Although
the potential for linear transient growth is lower for oblique waves than for streamwise
vortices, the threshold is lower for (OW) than for (SV).

The question of thresholds for transition initiated by streamwise vortices was
considered previously by Hamilton & Abernathy (1994), who did experiments in
water table flow. They found that strong vortices ultimately led to transition, whereas
weak vortices did not, but they were unable to determine a precise value of the vortex
strength for transition. They conclude that the existence of inflection points in the
spanwise velocity profile is necessary but not sufficient for transition to occur.

The purpose of this paper is threefold.

(i) Investigate the streak breakdown phase of the streamwise vortex and oblique
wave scenarios. In particular, we are interested in the relationship between the
threshold for streak breakdown and the threshold for transition in scenario (SV).

(ii) Understand why smaller streamwise vortices lead to transition in plane Poiseuille
flow than in plane Couette flow, even though the transient growth of streamwise vor-
tices is quantitatively similar in both flows.
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(iii) Show that the thresholds for transition for the streamwise vortex and oblique
wave scenarios are substantially lower than the threshold for transition from Tollmien–
Schlichting waves.

Streak breakdown in the spatial setting at subcritical Reynolds numbers in Poiseuille
flow has recently been investigated experimentally by Kawakami, Elofsson & Alfreds-
son (1997). Streak breakdown has also been considered in turbulent channel flows.
Hamilton, Kim & Waleffe (1995) and Waleffe (1995a) studied streak breakdown in
Couette flow via direct numerical simulations and linear stability analysis. Cough-
lin (1996) investigated streak breakdown in both Couette and Poiseuille flows via
direct numerical simulations. In these papers, streak breakdown is one phase of a
self-sustaining cycle which forms the backbone of the turbulent state. Our direct sim-
ulations and linear stability analysis are similar to those in Hamilton et al. (1995) and
Coughlin (1996). The present paper extends this previous work in several directions
as outlined below.

Section 2 gives further details on the breakdown of streamwise streaks as it occurs in
a number of flow geometries. Section 3 describes the simulation code and § 4 presents
results on growth rates for streak breakdown from direct numerical simulations.

Section 5 presents results on growth rates from a linear stability analysis for both
Couette and Poiseuille flow. We find good agreement between simulations and linear
analysis. An analysis of the dependence of the growth rate on the initial vortex
amplitude is presented. We find that shear in the wall-normal direction at the centre
of the channel provided by the underlying base flow can inhibit the breakdown
of streaks; a model problem is presented and analysed to demonstrate this. This
phenomenon differentiates Poiseuille flow, where the shear at the centre is 0, from
Couette flow, where the shear is non-zero. We end this section by showing that
the growth rates for the fundamental-type instability are greater than those for the
subharmonic-type instability.

Section 6 presents a brief discussion of the oblique wave transition scenario.
Section 7 compares the thresholds for streak breakdown with the threshold for
transition from streamwise vortices. As expected, the streak instability is necessary
but not sufficient for transition. We also examine the differences in the threshold
scalings for the two flows.

Section 8 compares the threshold energy for transition in (SV) and (OW) with
that of (TS). The threshold energy for the secondary instability scenario is about
2 orders of magnitude smaller in (SV) and (OW) than in (TS); see figure 19. If
a two-dimensional optimal disturbance (2DOPT) is used as an initial condition in
the secondary instability scenario, the discrepancy is only an order of magnitude.
Furthermore, even though transition in (SV) and (OW) takes place on a time scale
O(R) (the time for development of the streaks) as compared to the O(1) time scale
for (TS), we show that the threshold energy for (OW) is still two orders of magnitude
smaller than that for (TS) and an order of magnitude lower than that for (2DOPT)
over comparable times scales at R = 1500. The threshold for (SV) is an order of
magnitude lower than that for (TS) and a factor 3 lower than that for two-dimensional
optimals; see figure 21.

2. Streak breakdown
Transition initiated by streamwise vortices as in scenario (SV) occurs in a number

of flow geometries, including flow over a curved wall and in curved channel flow.
These flows are linearly unstable, with streamwise vortices as the primary instability.
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In channel flow, streamwise vortices are not a primary linear instability. This is
probably the reason why scenario (SV) has received little attention in channel flow.

In flow over a curved wall the vortices are called Görtler vortices; see Saric (1994)
for a review. In this geometry there are two types of unstable modes. In most cases,
the most unstable is a sinuous mode, similar to that in figure 2. In addition, there
is a varicose mode, which is symmetric in the spanwise direction. Streak breakdown
was studied experimentally by Swearingen and Blackwelder (1987). The breakdown
was studied by an inviscid linear analysis by Hall & Horseman (1991). By an energy
analysis, Yu & Liu (1994) showed that the sinuous and varicose modes are correlated
with inflection points in the spanwise and streamwise directions, respectively. Li &
Malik (1995) performed an inviscid linear stability analysis and found that for some
parameter combinations the varicose mode is the most unstable.

In curved channel flow driven by a pressure gradient, Dean vortices develop if
the Reynolds number is sufficiently large. By linear analysis and direct simulations,
Finlay, Keller & Ferziger (1988) found two types of instability. Spanwise inflection
instability occurs for Reynolds numbers R above twice the critical value Rc for the
primary instability. In addition there is a second instability, called undulating, that
occurs if R > 1.3Rc. By considering one-dimensional streak profiles of the form U(y)
and U(z), Le Cunff & Bottaro (1993) concluded that the undulating instability is
centrifugal in nature. Matsson & Alfredsson (1992) observed the spanwise inflectional
instability experimentally.

Streak breakdown also occurs in flows above a flat plate. Fischer & Dallmann (1991)
investigated the primary and secondary instability of a three-dimensional boundary
layer using a laminar Falkner–Skan–Cook profile and a spanwise-varying finite-
amplitude state obtained from measurements. They found good agreement between
a secondary instability analysis and experimental results. Bakchinov et al. (1995)
observe streak breakdown experimentally by directly putting streamwise vortices in
the flow. Matsubara & Alfredsson (1995) observe instability, as in figure 2, just before
breakdown of streaks into turbulent spots.

Kawakami et al. (1997) recently performed experiments on streak breakdown in
the spatial setting in plane Poiseuille flow at Reynolds numbers in the range 2000–
2900. They created streaky structure with suction and found that the least-stable
mode is sinuous and that breakdown occurs only if the streak amplitude exceeds
a certain threshold. They found that growth rates are independent of the Reynolds
number in the above range. Comparisons with results in the present paper are given
below.

Streaky structures elongated in the streamwise direction play a fundamental role in
the sustainment of turbulence in wall-bounded shear flows (Kline et al. 1967; Kim,
Kline & Reynolds 1971), and much work has been done on the origin and breakdown
of these structures in the turbulent regime. An analysis of streak breakdown in channel
flow is presented in recent papers on near-wall turbulence by Hamilton et al. (1995),
Waleffe (1995a) and Coughlin (1996). In the model considered in these papers, streak
breakdown is one phase of a self-sustaining cycle in turbulent flow, which includes
streak formation, streak breakdown, and streamwise vortex regeneration from the
direct nonlinear interaction of the streak instability eigenmode.

Dauchot & Daviaud (1995b) investigated the evolution of streamwise vortices in
Couette flow by placing a wire in the flow. They found that if the Reynolds number
is above 160, streamwise vortices are continuously shed from the wire and create
streaks. The streaks and vortices extend a finite distance from the wire, with the
distance increasing with Reynolds number. Above R = 340, the vortices break down
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and turbulence appears. Evidence of a streak breakdown as in the Introduction is not
apparent.

Finally, we note that Zikanov (1996) has recently investigated scenario (SV) in
incompressible pipe flow by direct simulations. The scenario appears to be the same
as in the other flow geometries.

3. Description of numerical techniques
The simulations in this paper are done using a program that solves the full three-

dimensional Navier–Stokes equations in the channel flow geometry (Lundbladh et
al. 1992). The program uses Fourier series in the streamwise (x) and spanwise (z)
directions and Chebyshev series in the normal (y) direction. Time integration is done
by a fourth-order Runge–Kutta formula for the nonlinear terms and a second-order
Crank–Nicholson method for the linear terms. Aliasing errors are removed by the 3

2
-

rule when the FFTs are calculated. For Poiseuille flow constant mass flux is assumed.
The code has been tested thoroughly and has been run on various workstations and
supercomputers.

The flow is assumed to be periodic in the homogeneous directions with lengths
Lx and Lz in the streamwise and spanwise directions, respectively. The fundamental
wavenumbers are αf = 2π/Lx and βf = 2π/Lz . The length in the wall-normal direction
is fixed at 2.

Our results on thresholds are expressed in terms of energy density of initial
disturbances. The energy density of a disturbance is given by

E =
1

2V

∫
period

(u2 + v2 + w2)dx, (1)

where u, v, w are the perturbation velocities, the region of integration is one periodic
box, and V is the volume of the periodic box. We can re-write (1) for the case of a
wave-like disturbance of the form

Re{(ū(y), v̄(y), w̄(y))eiαx+iβz},

where α and β are the streamwise and spanwise wavenumbers. Defining the normal
vorticity function as η̄ = iβū− iαw̄ and k2 = α2 + β2, we have

E =
1

8k2

∫ 1

−1

(∣∣∣∣dv̄dy

∣∣∣∣2 + k2|v̄|2 + |η̄|2
)

dy.

In our computations of transition for the three scenarios random noise with total
energy density 1% of the primary disturbance energy density is added to modes with
streamwise wavenumber 0,±αf,±2αf and spanwise wavenumber 0,±βf,±2βf . The
noise is in the form of Stokes modes. Noise is necessary for transition for scenarios
(SV) and (TS), but is not required for scenario (OW).

The initial disturbances in simulations of scenario (TS) are determined by solving
the Orr–Sommerfeld equation for the least-stable mode. For scenarios (SV), (OW),
and (2DOPT) the initial disturbances are optimal streamwise vortices, oblique waves,
and two-dimensional waves, respectively. The optimals have the greatest potential for
transient growth in the linear case. The computations of initial disturbances are done
by spectral methods (Reddy & Henningson 1993).
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Figure 4. Disturbance energy for linear and nonlinear evolution of a finite-amplitude initial
optimal streamwise vortex in Couette flow. (See Case 2 below.)

4. Direct numerical simulations of streak breakdown
We begin with an examination of the streak breakdown phase of the streamwise

vortex scenario by direct simulations. The initial streamwise vortex has the form

Re{(U1(y, t = 0), V1(y, t = 0),W1(y, t = 0))eiβ0z}. (2)

The vector function U 1(y, t = 0) is chosen so it is an optimal. Roughly speaking, the
optimal disturbance is configured so that most of the energy is in the normal velocity
component.

As the initial streamwise vortex evolves it generates streamwise velocity. For the
inviscid linear case, Ellingsen & Palm (1975) showed that V1(y, t) is constant and that
the streamwise disturbance velocity has the form

U1(y, t) = U1(y, 0)−U ′(y)V1(y, t)t, (3)

where U(y) is the laminar velocity profile. Landahl (1980) extended this result to the
linear evolution of localized disturbances.

Viscosity shuts off the growth of streamwise disturbances. In the linear evolution of
an optimal vortex in viscous flow the maximum energy growth occurs at a time O(R)
as R → ∞ (Kim & Moser 1989; Gustavsson 1991; Butler & Farrell 1992; Reddy &
Henningson 1993). At this time, the streamwise disturbance velocity is roughly O(εR),
where ε is the amplitude of the initial normal velocity. This corresponds to energy
growth by a factor O(R2).

Figure 4 shows the disturbance energy of an evolving optimal vortex in Couette
flow at R = 500 in the absence of noise for β0 = 2. In Poiseuille flow the greatest
linear transient growth occurs close to this wavenumber. In Couette flow the greatest
transient growth occurs for β0 ≈ 1.66. The initial energy density is 4 × 10−4. If the
disturbance is evolved linearly, there is energy growth by a factor ≈ 275. In the full
nonlinear simulation energy is extracted from the mean flow as the streaks grow and
the shear which drives the streaks is reduced so that the streaks do not grow to
their full linear potential. In the nonlinear evolution, higher harmonics with spanwise
wavenumbers kβ0 for k = 2, 3, . . ., are generated and the mean flow, which is initially
the linear profile U = (y, 0, 0), is modified.

For this simulation and the rest in this section the periodic box has dimensions
8π × 2× π. We use 49 discretization points in the y-direction and 32 Fourier modes
in the x- and z-directions.
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Case Flow R β0 Ampl. Ev Es

1 Couette 500 2 1.0× 10−2 2.5× 10−5 4.2× 10−3

2 Couette 500 2 4.0× 10−2 4.0× 10−4 6.2× 10−2

3 Poiseuille 1500 2 2.0× 10−2 1.0× 10−4 1.5× 10−2

Table 1. Summary of simulation parameters. The fifth column gives the amplitude of the initial
vortex. The final two columns give the energy density of the initial vortex, Ev , and the streak, Es.
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Figure 5. Energy density in the wavenumbers (α0, kβ0), for k = 0, 1, 2, 3, 4, 5 for Couette flow with
R = 500 (Case 2). Here α0 = 0.75 and β0 = 2.

Note that the disturbance eventually dies out in both the linear and nonlinear
simulations. In the linear case the decay is exponential with decay rate O(1/R). Hence,
the streak profile, as shown in figure 2, is not steady. In the stability calculations of
the next sections we make the assumption that the time scale for decay of streaks is
slower than that for streak breakdown.

Our goal is to investigate the stability of streaks generated by the initial optimal
vortices. We consider three cases, summarized in table 1. For the Couette flow cases,
we take the velocity field that evolves from the initial streamwise vortices after 30 time
units. For the Poiseuille flow case, we take the field at t = 40. The initial amplitude is

defined as A = 2E
1/2
v . We add a small perturbation of the form

U pert = Re

{
eiα0x

15∑
k=−15

F k(y)eikβ0z

}
to the streak field. The energy density of the perturbation is ≈ 10−15. Here α0 is
the streamwise wavenumber of the perturbation. The functions {F k} are random
linear combinations of Stokes modes (Lundbladh, Henningson & Johansson 1992).
The evolution of the disturbance consisting of the streak and the perturbation is
computed by the simulation code.

Figure 5 plots the energy density of the perturbation in various modes for α0 = 0.75
for Case 2. After an initial transient phase, the energy density grows or decays
exponentially; see also (Hamilton et al. 1995). If we assume that the energy density in
a particular wavenumber behaves like Ce2γ(t−t0) for the straight part of the curve, then
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we define γ to be the growth rate. For the case considered in figure 5 we find that the
growth rate is approximately 0.14. We have done similar calculations for other values
of the streamwise wavenumber α0 and also for Cases 1 and 3.

The approach taken here is similar to that in (Hamilton, Kim & Waleffe 1995),
where the streak profile is taken from a simulation of turbulent flow. However,
in their work the streak profile is ‘frozen’. They report some differences between
simulations in which the streaks are artificially frozen and those in which the streaks
are allowed to evolve. Coughlin (1996) also performed similar computations, but used
a small amount of forcing to maintain the streamwise vortices and streaks in a steady
equilibrium. For Poiseuille flow and low levels of forcing in Couette flow a constant
growth rate is found. For high levels of forcing in Couette flow, the growth rate varies
periodically with time. We have not investigated this phenomenon.

5. Linear stability analysis
We model the above results by a linear stability analysis. There are several standard

assumptions that greatly simplify the linear stability equations (Hall & Horseman
1991; Yu & Liu 1994; Li & Malik 1995; Finlay et al. 1988; Waleffe 1995a).

(a) The normal and spanwise components of the velocity field for the streak are
negligible. This is verified in the numerical simulations of the previous section. For
example, for the high-amplitude streaks in Couette flow the streamwise component
contributes more than 99% of the disturbance energy.†

(b) The streak profile does not depend on the streamwise coordinate x. If the initial
vortex does not depend on x, then the streak profile does not depend on x.

(c) We assume that the time scale for decay of streaks is longer than the time scale
for streak instability. As figure 4 shows, streaks eventually decay in the absence of
noise. In our computations we take the streak profile to be time-independent.

We assume a streak velocity field of the form U = (U(y, z, t), 0, 0). The velocity field
is periodic in the spanwise direction and can be expressed in the form

U(y, z, t) = Re

{
U0(y, t) + 2

∞∑
k=1

Uk(y, t)e
iβ0kz

}
. (4)

For the simulations of the previous section, the functions {Uk} decay to zero rapidly
as k → ∞. As mentioned in (c), we take the streak profile at fixed t and assume that
it is steady in the linear stability calculations.

To study the stability of the streak we substitute U + u, where u(x, y, z, t) = (u, v, w)
is the perturbation velocity, into the Navier–Stokes equations. The resulting linear
equations and the solution technique are similar to those in Waleffe (1995a). For
completeness we have included the equations in Appendix A.

We assume that the perturbation normal velocity and normal vorticity have the
form

v(x, y, z, t) = Re

{
eiα0x−ict

m∑
k=−m

vk(y)eikβ0z

}
, (5)

η(x, y, z, t) = Re

{
eiα0x−ict

m∑
k=−m

ηk(y)eikβ0z

}
, (6)

† It was pointed out in a private communication (Waleffe 1994), that it is not only the size of the
velocity components themselves but their gradients which is of importance in the stability analysis.
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Figure 6. Comparison of growth rate results from direct numerical simulations and linear stability
analysis for high-amplitude streaks in Couette flow with R = 500. The small circles are the results
obtained from the direct numerical simulations of § 4.

where α0 and β0 are the fundamental streamwise and spanwise wavenumbers, re-
spectively. To simplify the stability calculations further we assume that the quantities
{Ui(y, t)} all have phase 0. (This is the case in the examples of the previous section.) In
this case, sinuous and varicose modes can be considered separately. The term sinuous
refers to disturbances for which v and η are odd and even functions of z, respectively:

v(x, y, z, t) = Re

{
2ieiα0x−ict

m∑
k=1

vk(y) sin(kβ0z)

}
, (7)

η(x, y, z, t) = Re

{
eiα0x−ict

(
η0(y) + 2

m∑
k=1

ηk(y) cos(kβ0z)

)}
. (8)

To derive the stability equations we substitute (7) and (8) into (A 5) and (A 6) and
collect terms with like powers of eiβ0z . This yields a differential eigenvalue problem for
the unknown eigenvalue c and the corresponding vorticity and velocity components,
{ηk} and {vk}. We have developed a code based on a Chebyshev collocation discretiza-
tion for solving this eigenvalue problem. The code takes as input the terms {Ui} in
the expansion of U(y, z, t) and computes the eigenvalue c and the eigenfunctions.
The number of terms in the expansion of U(y, z, t) can be varied and is increased
until the growth rates for instability do not vary significantly. Similarly, the code
increases the number of terms m in the expansion of the perturbation until successive
approximations to the growth rate Im(c) differ by less than ≈ 0.5%.

Figures 6 and 7 compare growth rates obtained from direct numerical simulations
with those obtained from linear stability analysis for the three cases. The small
circles are from direct numerical simulations, as reported in figure 5, for example.
A difficulty in these computations is choosing the most appropriate streak profile.
In our calculations the profiles {Ui} are taken from the numerical simulations at
times t = 30, 60, 80 for Couette flow and t = 40, 70, 90 for Poiseuille flow. We see
that there is good quantitative agreement between the numerical simulation and the
linear stability analysis for Couette flow and qualitative agreement for Poiseuille flow.
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Figure 8. Real and imaginary parts of η0(y) for the least-stable mode for Couette flow (Case 2)
and α0 = 0.75 at t = 60. The solid line is from the numerical simulation and the dashed line is from
the linear stability analysis with m = 6 terms.

For the high-amplitude streaks where there is streak instability, we find that the
least-stable mode is sinuous.

To verify the linear stability analysis results we did computations with 25 and 33
Chebyshev grid points in the normal y-direction. In general the computed growth rate
oscillates as a function of the number of terms in the expansions of the disturbance
and U(y, z, t). The number of terms required for convergence increases with α0 and the
streak amplitude. For the case of low-amplitude streaks in Couette flow (Case 1) m = 5
terms in the expansion of the disturbance yielded converged results, independent of
α0. For the two other cases, as many as 14 terms were required for convergence. The
number of terms in the expansion of U(y, z, t) was 4 for Case 1, 7 for Case 2, and 9
for Case 3. These results are consistent with those of Waleffe (1995a), who has done
an extensive convergence study.
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The eigenfunctions from linear stability analysis agree well with those from direct
numerical simulations. As the streak breakdown progresses, the dominant structure
in the noise modes will be the eigenfunction associated with the least-stable mode.
Figure 8 compares η0(y) taken from the direct simulation with the eigenfunction
associated with the least-stable mode computed by the linear analysis. There is good
agreement for higher modes as well.

We did not determine the phase velocity of the least-stable mode in the direct
numerical simulations, but we did compute it using linear stability analysis. For the
perturbations given in (5), (6) the phase velocity is defined as cr/α0, where cr is the real
part of the eigenvalue c. We have computed the phase velocities corresponding to the
growth rates in the two cases of high-amplitude streaks (Cases 2 and 3); see figures 6
and 7(b). For Couette flow, when the growth rate is positive the phase velocity is
0. For Poiseuille flow, the phase velocity is ≈ 0.7–0.8 for all points on the curves in
figure 7(b), which again correspond to positive growth rates. The results for Poiseuille
flow are consistent with those in Kawakami et al. (1997), where a phase velocity of
≈ 0.69 is found.

It appears that the phase velocity is correlated with the mean velocity U0(y, t) at
the centre of the channel y = 0. As shown in figure 9, these velocities are 0 and ≈ 0.8
for the Couette and Poiseuille flow examples, respectively. Note that the velocity
profiles are flat at the centre of the channel. Plots of the eigenfunctions indicate that
the least-stable mode in cases of positive growth rate is located at the centre of the
channel, as in figure 8.

It is interesting to plot the entire spectrum of the linear stability matrix. Figure 10
shows the results for Cases 2 and 3. The location of the least-stable mode changes
with streak amplitude. For the laminar Couette profile, U0 = y, in the absence of
streaks, the least-stable modes are localized near the walls and have phase velocities
≈ ±1. For laminar Poiseuille flow, the least-stable mode, a TS wave, has phase velocity
≈ 0.3 and is located near the walls, as well.

The essence of the streak breakdown can be understood by considering the stability
of the purely spanwise profile

U(z) = AS cos β0z (9)
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to perturbations in the (x, z)-plane in inviscid flow (Finlay et al. 1988; Waleffe 1995a).
Here AS , the streak amplitude, is a constant. It is assumed that v = 0 and all
perturbations are independent of y. For a one-term truncation, the eigenvalue is
given by Waleffe (1995a)

c = i
|α0AS |√

2

(
β2

0 − α2
0

β2
2 + α2

0

)1/2

. (10)

Hence, the flow is unstable for 0 < α0 < β0 and is neutrally stable for α0 > β0. The
results are qualitatively the same if more terms are included in the expansion.

The discussion above on the model problem and the results in figures 6, 7, and
previous work by other researchers suggest that the instability occurs for streamwise
wavenumbers α0 satisfying αmin < |α0| < αmax . Roughly speaking, αmax is on the
order of β0. For the Couette flow example (Case 2), αmax < β0. Direct simulations
indicate that αmax ≈ 3.5 for the Poiseuille flow example (Case 3). For viscous flow
the growth rate is negative for α0 = 0; in fact the growth rate is O(R−1) for α0 = 0
as R → ∞. Numerical simulations involving a model problem and (10) indicate that
the growth rate increases linearly with α0 for small α0, suggesting that αmin = O(R−1).
For Poiseuille and Couette flow we have not been able to prove this result. We
conjecture that αmin = o(1) as R → ∞. If there is an instability, the phase velocity
of the least-stable mode is roughly equal to the mean velocity at the centre of the
channel, U0(0, t).

The dependence of the growth rate on amplitude is more complicated for Poiseuille
and Couette flow than it is for the inviscid model problem. For simplicity, we have
decided to investigate dependence on initial vortex amplitude AV = 2E1/2, where E
is the initial disturbance energy density. We determine the maximum growth rate as
a function of time for β0 = 2 and α0 = 1. Roughly speaking, if the vortex amplitude
AV is small, the streak amplitude is |U1| ≈ CAVR, where C is a constant.

Results for Poiseuille flow are shown in figure 11. There are several features to
note. First, there is a cusp in the graph, and this is clearly visible for the R = 3000
curve. For small vortex amplitude the growth rate is independent of amplitude. In this
case, the flow is dominated by the mean flow U0(y, t), which is essentially the initial
laminar profile 1− y2. The least-stable mode for the laminar flow is a varicose mode,
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Figure 11. Maximum growth rate as a function of initial vortex amplitude for (a) Poiseuille and
(b) Couette flow (α0 = 1 and β0 = 2).

located near the wall with phase velocity of ≈ 0.3. As the initial vortex amplitude
increases, the streaks become more prominent and have the predominant influence
on the stability characteristics of the flow. The least-stable mode is a sinuous mode,
centered near y = 0 with phase velocity ≈ 1.

The qualitative features of the curves in figure 11 do not change if the higher
harmonics U2, U3, . . ., are not included in the calculations or if U0, which is modified
by nonlinear interactions, is replaced by the laminar profile 1− y2. As the amplitude
increases, the growth rate increases. The curves are approximately straight, suggesting
qualitative agreement with (10) for the model inviscid problem. The slopes of the
curves are approximately 8 and 16 for Reynolds numbers 1500 and 3000, respectively.
The difference in slopes is due to the fact that a vortex of amplitude AV generates a
streak with amplitude |U1| ≈ O(AVR).

Kawakami et al. find that growth rate increases linearly with streak amplitude and
is independent of Reynolds number in their spatial experiments in plane Poiseuille
flow with Reynolds number in the range 2000–2900.

Results for Couette flow for R = 500 are shown in figure 11(b). The solid curve
takes into account all terms in the expansion of the streak. The dominant feature
of the curve is the cusp and the rapid increase in the growth rate for amplitudes
> 0.018. For low initial amplitudes, the least-stable modes are concentrated near the
wall moving with phase velocity ≈ ±0.7. For amplitudes > 0.018, the least-stable
mode is a centre mode with phase velocity 0. Note that the cusp also exists if only U0

and U1 are included in the calculation. The growth rate is substantially lower if U0

is replaced by the laminar profile y or if only the modified U0 is included. Hamilton
et al. (1995) have done similar calculations and find that it is the combination of the
streaks and modified mean flow that is unstable. They do not report results on the
stability of the streaks and the laminar Couette flow.

Coughlin (1996) has produced plots similar to those in figure 11. In her work the
growth rate is determined by direct numerical simulations as a function of a forcing
parameter instead of amplitude.
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Figure 12. Growth rate of least-stable sinuous mode for model profile U(y, z) = Sy + 2AS cos β0z.
Here α0 = 1 and R = 500.

For Couette flow streak instability depends on both the streak amplitude |U1| and
the modified mean flow U0. The key component of the mean flow is the shear ∂U0/∂y.
For Couette flow in the absence of disturbances, the mean shear is 1 throughout the
channel. Mean shear is reduced at the centre of the channel as streamwise vortices
generate streamwise streaks. A discussion of this fact for a model problem is presented
in Appendix B. For streamwise-dependent disturbances in a viscous flow, mean shear
is stabilizing, since mean shear leads to increased gradients in the normal direction,
thus increasing dissipation (Dubrulle & Nazarenko 1994). As a result, for example,
small disturbances decay with rate O(R−1/3) in plane Couette flow (Drazin & Reid
1981) and only O(R−1) in flow with zero laminar velocity as R →∞.

We investigate the effects of the shear and streak amplitude on streak instability
by computing growth rates for the contrived model velocity profile:

U(y, z) = Sy + 2ASRe{eiβ0z} = Sy + 2AS cos β0z,

where S is the shear and AS is the streak amplitude. Figure 12 plots contours of the
growth rate for the least-stable sinuous mode for α0 = 1.0, β0 = 2, and R = 500. For
fixed streak amplitude, the growth rate increases as the shear decreases. The spacing
between the contour curves indicates that the increase becomes more rapid as S
approaches 0. For S = 0, streak breakdown occurs for AS > 0.01. When the shear is
large streak breakdown can occur only if the streak amplitude is large. For S = 1,
for example, a positive growth rate is achieved for AS > 0.42.

The discussion above indicates that the mean shear plays a dual role in spanwise
inflectional instability. On one hand, mean shear is necessary for the creation of
spanwise-varying streaks, as shown in (3). On the other hand, mean shear is stabilizing.
Waleffe (1997) found this to be the case as well for a four-dimensional model of a
self-sustaining process in turbulent shear flows.

We end this section by examining growth rates for more general disturbances of
the form

v(x, y, z, t) = Re{eiα0x−ict
∑
k

vk(y)ei(k+σ)β0z}, (11)
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Figure 13. Growth rates for instability of detuned modes in high-amplitude streaks in Couette
flow (α0 = 1). The two small circles are from numerical simulations.

η(x, y, z, t) = Re{eiα0x−ict
∑
k

ηk(y)ei(k+σ)β0z}. (12)

The constant σ is called the detuning parameter.
Figure 13 plots the growth rate as a function of σ for β0 = 2 and α0 = 1 for

high-amplitude streaks in Couette flow. The small circles in figure 13 are obtained
from direct numerical simulations. There is good agreement between the simulations
and stability analysis.

For these calculations one cannot separate the stability equations into even and
odd cases. This means that for the same number of terms in the expansion of v and
η the dimension of the discrete matrix problem is doubled. For this reason, we have
restricted attention to low values of α0 in the two high-amplitude examples. We have
done similar calculations for high-amplitude streaks in Poiseuille flow. We have found
that the greatest positive growth rates occur for σ = 0. This indicates that the streak
breakdown is a fundamental-type instability.

6. Transition initiated by oblique waves
Transition initiated by oblique waves has been investigated in a number of flow

geometries including plane channels, compressible and incompressible boundary layers
and compressible shear layers.

In previous work Schmid & Henningson (1992) simulated oblique transition in
Poiseuille flow. Their oblique waves are the least-stable modes for α = 1 and β = ±1.
In their calculations spanwise symmetry is preserved. Hence, the breakdown is different
than that shown in the Introduction.

In our simulations of (OW) the initial condition consists of optimal oblique waves
with wavenumbers α = 1 and β = ±1 plus a small amount of random noise with 1%
of the oblique wave energy spread over modes with wavenumbers with α = 0,±1,±2
and β = 0,±1,±2. Spanwise symmetry is not enforced. The addition of noise enables
the streaks to break down in a manner similar to that discussed in § 5.

Figure 14 plots the energy in various wavenumbers for a simulation in Poiseuille
flow with R = 1500. The initial energy density in the oblique waves (1,±1) is
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Figure 14. Energy density in various wavenumbers in a simulation of oblique wave transition in
Poiseuille flow (R = 1500).

1.25×10−5. The rapid growth and slow decay of energy in the (0, 2) mode is similar to
that for the streamwise vortex scenario. The curves for the (1, 0) and (1, 2) modes have
the familiar signature of a secondary instability. The energy in (1,1) grows initially
due to linear transient effects then decays. The growth around t = 200 is due to a
subharmonic instability. Plots of the streamwise velocity at t = 100 and t = 220 are
similar to those in figure 2.

In addition to changing the qualitative features of the transition, the addition of
noise lowers the threshold for transition for the oblique wave scenario. For R = 1500,
the threshold energy density is reduced by a factor of approximately 4.

7. Threshold amplitude for transition for (SV)
A question motivating the present paper is: how does the threshold disturbance

amplitude for transition in channel flows depend on the Reynolds number? This
question goes back to the early work on transition in a pipe by Reynolds.

The threshold for transition for scenario (SV) has been investigated in two recent
papers by direct numerical simulations. In both papers β0 = 2 and streamwise-
dependent noise of≈ 1% of the initial disturbance energy density is added to break the
symmetry. Kreiss et al. (1994) present examples showing that the threshold amplitude
scales like R−1 in Couette flow for 500 6 R 6 4000. A fixed streamwise vortex is used
as an initial condition for all the simulations. Lundbladh et al. (1994) demonstrated
that the threshold scales like R−7/4 for 1500 6 R 6 5000 in Poiseuille flow. The initial
disturbance is the optimal streamwise vortex with initial normal velocity that is odd
in y. The computations are done in a periodic box with dimensions 2π × 2× π. The
computational grid is refined several times to ensure that the computed threshold
value is not a numerical artifact.

For transition to take place in the above mentioned simulations, streak breakdown
must occur. The growth rate for streak instability depends on the fundamental
streamwise and spanwise wavenumbers. A positive growth rate for streak instability
is necessary for transition but is not sufficient. In addition, whether transition occurs
depends on the level of the background noise, since streaks decay slowly. In this
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Figure 15. Neutral curves for streak instability for (a) Couette and (b) Poiseuille flow for β0 = 2.
The circles are computed values for the threshold vortex amplitude for a neutral growth rate, and
the errors in these values are at most the size of the circles. The crosses are actual threshold vortex
amplitudes for transition to turbulence from direct numerical simulations.

section we ask the question: how does the threshold amplitude for a neutral growth
rate for streak breakdown depend on the Reynolds number? The threshold amplitude
calculated in this section gives a lower bound for transition to turbulence, which is
independent of α0 and the level of the noise. To keep the calculations manageable,
we fix β0 = 2.

Our procedure is straightforward. For each Reynolds number we compute the
optimal streamwise vortex for β0 = 2. Streamwise streaks are generated as the
vortices evolve in time. The streak profile depends on the evolution time and the
amplitude of the initial vortex. For each initial vortex we determine the maximum
growth rate as a function of evolution time and α0. The neutral amplitude is the
lowest amplitude for which the maximum growth rate is zero.

Figure 15 plots the neutral curve for Poiseuille and Couette flows on a log-log
graph. In our calculations the amplitude is equal to two times the square root of the
disturbance energy density of the initial streamwise vortex. The circles are estimated
values of the threshold for a neutral growth rate. The lines are linear fits to the
data. For Poiseuille flow the slope is ≈ −1.6 and for Couette flow the slope is ≈ −1.
Close to the neutral amplitude in Poiseuille and Couette flows, the largest growth
rate occurs for α0 ≈ 0.9 and α0 ≈ 0.3, respectively. The optimal time increases linearly
with R in both flows. The crosses in the figure are the thresholds for transition from
direct numerical simulations. The results for Poiseuille flow are from Lundbladh et al.
(1994). The results for Couette flow are computed in a periodic box with dimensions
4π × 2× 2π (αf = 0.5).

There are several reasons for the discrepancy between the threshold amplitude for
transition and the threshold for a positive growth rate. First, for the growth rate
calculations we have varied α0 so that the growth rate is maximal. For the transition
calculations, α0 = 0.5 and α0 = 1, for Couette and Poiseuille flow, respectively.
Secondly, streamwise streaks decay with a time scale of O(R) as R → ∞. When the
growth rate is near 0, the time scale for decay of streaks is shorter than that for
streak breakdown and the linear stability analysis may not be valid. Finally, a streak
instability need not result in a transition. At present, the mechanisms involved in the
final phase of the transition scenario (SV) are not completely understood. The two
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Figure 16. Neutral curve for streak instability as a function of the spanwise wavenumber β0 for
fixed Reynolds number.

scaling laws R−1.6 for streak breakdown and R−1.75 for transition in Poiseuille flow are
not inconsistent, since transition can occur in principle for infinitesimal disturbance
if R > 5772.

We have done a few computations at lower Reynolds numbers and find positive
growth rates for R = 100 in Couette flow and R = 750 for Poiseuille flow. We made
an initial attempt to determine the lowest Reynolds number for the streak instability
in Couette flow using linear stability analysis. We found that at Reynolds number
below ≈ 100 the normal and spanwise components of the streak velocity field are
not negligible. The terms must be incorporated into the stability equations to get an
accurate result. Using direct numerical simulations, Baggett (1996) has found that the
streaks are unstable at Reynolds numbers at least as low as 50 in Couette flow and
250 in Poiseuille flow.

Figure 16 plots the threshold amplitude for breakdown of streaks as a function
of β0 for fixed Reynolds number. The minimum threshold amplitude occurs for
1.5 6 β0 6 2 for Couette flow and for 2 6 β0 6 2.5 for Poiseuille flow. There appears
to be a correlation between the threshold vortex amplitude for streak breakdown
and the potential for transient linear growth. Let G(β0, R) denote maximum transient
linear growth factor for the optimal streamwise vortex with spanwise wavenumber
β0. For example, for Couette flow with R = 500 and β0 = 2, this factor is ≈ 15. This
means that a vortex with ‘amplitude’ ε can evolve into a streak with amplitude 15ε in
a linear calculation. Growth rates for streak breakdown depend on streak amplitude.
This suggests that the minimum threshold for transition should approximately occur
for that wavenumber with the greatest potential for transient linear growth. This
appears to be the case, since the greatest potential for linear growth occurs for
β0 ≈ 1.67 and ≈ 2.6 in Couette and Poiseuille flow, respectively.†

† For Poiseuille flow the potential for transient growth is greatest for initial streamwise vortices
that are even with respect to y. For these disturbances, the greatest transient growth occurs for
β0 ≈ 2. It turns out that the threshold amplitude for transition to turbulence is lower for initial
streamwise vortices that are anti-symmetric with respect to y. For these disturbances, the greatest
growth occurs for β0 ≈ 2.6.
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Figure 17. Growth rate versus initial vortex amplitude for Poiseuille flow α0 = 1 and β0 = 2. The
solid line is for the least-stable mode. The dashed line is the growth rate for the least-stable sinuous
mode.

The scaling result for Poiseuille flow can be explained in a straightforward manner.
Roughly speaking, streak breakdown occurs if the spanwise inflectional instability is
sufficiently strong to overcome dissipation. Figure 17 plots growth rate versus vortex
amplitude. Let us explain the plot by focusing on the R = 5000 curves. Except for
small vortex amplitudes 6 3× 10−3, where the varicose mode is dominant, the least-
stable mode is a sinuous mode. The dashed line is the growth rate of the least-stable
sinuous mode for small amplitudes. For the relevant range of vortex amplitudes the
growth rate increases linearly with vortex amplitude; we have

γ ≈ −D(R) + CAVR, (13)

where AV is the vortex amplitude, C is a positive constant, and D(R) is the dissipation
term. Here we assume α0 is fixed.

The key question is: what is D(R)? This quantity is the decay rate of the sinuous
mode in laminar Poiseuille flow. The least-stable mode for laminar Poiseuille flow
lies on the A branch of the spectrum. It is this mode which is unstable when the
Reynolds number is sufficiently large. The least-stable sinuous mode lies on the P
branch of the spectrum. The modes on the P branch are stable for all R. Numerical
computations of growth rates shows that the least-stable P mode has a growth rate
of D(R) ≈ C ′R−0.55, where C ′ is a constant.

Solving (13) for AV when γ = 0 it follows that that the threshold amplitude satisfies
AV ≈ C ′′R−1.55, consistent with the results in figure 15.

The same heuristic argument is also valid for two model problems. Consider (a)
U(y, z) = 2AS (1− y2) cos 2z and (b) U(y, z) = 1− y2 + 2AS (1− y2) cos 2z. For case (a),
no mean flow, computations show that the threshold streak amplitude for breakdown
scales like C1R

−1 as R → ∞. For (b), where the mean flow is laminar Poiseuille
flow, the threshold scales like C2R

−0.55. The growth rate for low amplitudes satisfies
γ ≈ −D(R) + CAS , where C is a constant, for low streak amplitudes. For the case of
no flow D(R) = O(R−1) as R → ∞, corresponding to pure diffusion, and this yields
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Figure 18. Neutral stability curves for the model Couette flow model problem of this section.
The three curves from bottom to top at S = 0 correspond to R = 2000, 1000, 500. The circles and
crosses correspond to measurements of the shear and centreline amplitude of stable and unstable
streaks, respectively, from actual simulations. There are three circles or three crosses at each position
corresponding to three actual streaks generated from optimal vortices of amplitude ε, ε/2, ε/4 at
R = 500, 1000, 2000, respectively.

the threshold result AS = O(R−1) as R → ∞, agreeing with computations. For (b),
D(R) ≈ C ′R−0.55, and we get the result AS ≈ C ′′R−0.55.

Unlike Poiseuille flow, in Couette flow an O(1) streak and/or an O(1) shear
reduction, independent of R, is required for the streaks to be linearly unstable. To
generate such streaks or shear reduction the initial streamwise vortices must have
amplitude O(R−1) (see Appendix B). This behaviour is consistent with that in the
four-dimensional system of ordinary differential equations proposed by Waleffe (1997)
as a model of a self-sustaining turbulent cycle in shear flows.

The simple model problem considered in § 5 does not capture the O(R−1) threshold
amplitude, so we instead consider the more physical model velocity profile (Baggett
1996):

U(y, z) = y +U0(y) +U1(y) cos β0z

= Sy + (S − 1)(−2y3 + y5) + AS (1− y2) cos β0z. (14)

The profiles are chosen such that the mean flow is an S-shaped curve and the y-
dependence of the streak is parabolic to mimic the profiles in actual simulations such
as those shown in figure 9. Comparisons of the model profiles and profiles from
simulations can be found in Baggett (1996). The parameter S determines the shear
at the channel centre and parameter AS determines the streak amplitude. Figure 18
shows the neutral stability curves for α0 = 1, β0 = 2, and R = 500, 1000 and 2000.
Except for small S these curves are fairly independent of R and they all lie at a
constant distance from the laminar solution (S, AS ) = (1, 0) in the lower right corner
of the figure. To verify that the neutral stability curves for the model profile agree
with the neutral stability of streaks generated from optimal streamwise vortices we
have plotted measurements of ∂U0(0, tmax)/∂y and |U1(0, tmax)| from direct numerical
simulations, where tmax is the time at which the streak instability growth rate is largest.
In each simulation the stability of the streaks is predicted by the stability of the model



292 S. C. Reddy, P. J. Schmid, J. S. Baggett and D. S. Henningson

10–2

10–4

10–6

10–8

103 104

Reynolds number

In
it

ia
l e

ne
rg

y 
de

ns
it

y

(TS)

(2DOPT)

(N)

(SV)
(OW)

Figure 19. Threshold energy density for transition in Poiseuille flow for the three main scenar-
ios, two-dimensional optimals (2DOPT), and random three-dimensional noise (N). The circles
correspond to data from simulations. The lines are fits to the data.

profile. In fact, each circle or cross represents three independent simulations where
the streaks are generated by initial streamwise vortices of amplitude ε, ε/2, ε/4 for
R = 500, 1000, 2000, respectively.

8. Comparison of thresholds for transition
How do the thresholds for transition compare for the secondary instability scenario,

the streamwise vortex scenario, and the oblique wave scenario?
Figure 19 plots the threshold energy density for transition for the three scenarios

for Poiseuille flow for 1500 6 R 6 5000. We have also computed a threshold
for transition initiated by two-dimensional optimal disturbances (2DOPT) (Farrell
1988). These optimals have potential for moderate linear transient growth – a factor
of O(10) – at subcritical Reynolds numbers. As in the (TS) scenario, these initial
conditions also evolve into two-dimensional states that are linearly unstable to three-
dimensional disturbances. Finally, we compute a threshold for noise consisting of a
random combination of Stokes modes with streamwise and spanwise wavenumbers
0,±1,±2 (N). The threshold transition energy for scenarios (SV) and (OW) is more
than two orders of magnitude below that for (TS) and more than one order of
magnitude lower than that for two-dimensional optimals.

The procedure to create the plot is straightforward. For each scenario we run the
full nonlinear simulation code with initial disturbances of varying energy density. We
obtain upper and lower bounds on the initial energy for transition and have plotted
the average of these values. For scenarios (TS), (2DOPT), (SV) and (OW) noise with
energy density of 1% of the principal disturbance energy is added. We have verified
our results by increasing the resolution of the computational grid. The results are
listed in tables 2 and 3. The upper and lower bounds on the threshold energy listed
include the noise. For scenario (SV) the initial streamwise vortex has β0 = 2. For
scenario (OW) the oblique waves have α0 = 1 and β0 = ±1. For (TS) the initial TS
wave has α0 = 1. For (2DOPT) the optimal disturbance for α0 = 1 and β0 = 0 is used.
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Scenario R Grid Lower Upper

(SV) 1500 16× 81× 64 1.83× 10−5 1.93× 10−5

2000 16× 81× 64 6.32× 10−6 6.64× 10−6

3000 16× 81× 64 1.46× 10−6 1.52× 10−6

5000 16× 81× 64 2.56× 10−7 2.65× 10−7

(OW) 1500 16× 81× 48 7.28× 10−6 7.67× 10−6

2000 16× 81× 64 2.33× 10−6 2.43× 10−6

3000 16× 81× 64 5.03× 10−7 5.53× 10−7

5000 16× 81× 64 1.14× 10−7 1.19× 10−7

(TS) 1500 32× 81× 64 3.30× 10−3 3.45× 10−3

2000 32× 81× 64 1.11× 10−3 1.18× 10−3

3000 32× 81× 64 4.31× 10−4 4.50× 10−4

5000 32× 81× 64 5.75× 10−5 6.45× 10−5

(N) 1500 32× 81× 64 1.65× 10−4 1.70× 10−4

2000 32× 81× 64 7.00× 10−5 7.50× 10−5

3000 32× 81× 64 2.50× 10−5 2.75× 10−5

5000 40× 97× 80 8.50× 10−6 8.75× 10−6

(2DOPT) 1500 32× 81× 64 6.66× 10−4 6.99× 10−4

2000 32× 81× 64 2.67× 10−4 2.88× 10−4

3000 32× 81× 64 6.66× 10−5 6.95× 10−5

5000 32× 81× 64 4.81× 10−6 5.09× 10−6

Table 2. Upper and lower bounds on the threshold energy density for transition for the five
scenarios in Poiseuille flow. The results are given for the most refined grid. For scenario (SV) the
computational box is of size 2π × 2× π (αf = 1 and βf = 2). For the four other scenarios it is size
2π × 2× 2π.

Scenario R Grid Lower Upper

(SV) 500 16× 81× 64 1.92× 10−4 1.96× 10−4

1000 16× 81× 64 3.50× 10−5 3.65× 10−5

2000 16× 81× 64 8.53× 10−6 8.66× 10−6

(OW) 500 16× 81× 64 6.49× 10−5 6.61× 10−5

1000 16× 81× 64 1.20× 10−5 1.21× 10−5

2000 16× 81× 64 2.14× 10−6 2.18× 10−6

(N) 500 32× 81× 64 2.75× 10−3 3.00× 10−3

1000 32× 81× 64 2.25× 10−4 2.50× 10−4

2000 32× 81× 64 3.60× 10−5 4.00× 10−5

Table 3. Upper and lower bounds on the threshold energy density for transition for three scenarios
in Couette flow The results are given for the most refined grid. For scenario (SV) the computational
box is of size 4π × 2× π (αf = 0.5 and βf = 2). For the other two scenarios it is size 2π × 2× 2π.

Except for R = 3000 and R = 5000 for scenario (N), the upper and lower bounds
are the same on the next most refined grid, which has resolution 12 × 65 × 48 or
24× 65× 48.

There are several methods of determining if transition has taken place. For example,
one can look for sharp peaks in the energy density or in the Reynolds number based
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Figure 20. Reynolds number based on friction velocity for a simulation of scenario (SV) in Poiseuille
flow with R = 1500. In this case the initial disturbance energy is 2× 10−4, which is about twice the
threshold value.

on friction velocity at the wall. The friction velocity is defined as

Uτ =

(
ν
∂U

∂y

∣∣∣∣
wall

)1/2

.

A typical plot of the Reynolds number based on friction velocity is shown in figure 20
for a simulation of (SV). There is a slow increase in Rτ as vortices generate streaks,
then a rapid increase to peak, as the streaks break down and transition occurs. In the
cases where transition occurs we have not verified that a turbulent state is sustained.

For the (TS) and (2DOPT) scenarios the fundamental wavenumbers are αf = βf = 1
and the initial TS wave has streamwise wavenumber α0 = 1. For our simulations
only a fundamental-type breakdown is permitted. If subharmonic-type breakdown is
allowed, then we find that the threshold is marginally lower. For example for the (TS)
scenario for R = 1500 the threshold drops from ≈ 3.4× 10−3 to 3× 10−3.

Although (SV) and (OW) have lower thresholds than (TS) and (2DOPT), the
former scenarios occur on a time scale O(R), whereas (TS) and (2DOPT) occur on a
time scale O(1). The O(R) originates from the fact that this is the time scale in which
streaks are generated from streamwise vortices. We investigate transition time as a
function of initial disturbance energy for the five scenarios. We define transition time
as the time when the Reynolds number based on the friction velocity reaches the
value halfway between its initial laminar value and the value at the transition peak.
If transition does not occur the transition time is defined to be ∞.

Transition times as a function of the initial disturbance energy for R = 1500 and
R = 5000 are shown in figure 21. It is indeed the case that transition occurs on
a viscous time scale for scenarios (SV) and (OW) if the disturbance energy is the
near the threshold value. As the disturbance energy increases, the transition time
decreases significantly. For R = 1500, if one considers transition at comparable times,
the threshold for (SV) is an order of magnitude lower than for (TS) and a factor
of about three lower than for (2DOPT). The threshold for (OW) is two orders of
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Figure 22. Transition time as a function initial disturbance energy density in Poiseuille flow
(R = 7500). The symbols are as in figure 21.

magnitude lower than that of (TS) and more than an order of magnitude lower than
that of (2DOPT).

As the Reynolds number increases to R = 5000, (TS) and (2DOPT) become more
competitive with (SV). The difference in the threshold between (TS) and (SV) is only
a factor of ≈ 4 for transition occurring at time 150. The (2DOPT) scenario has a
lower threshold than (SV) for transition at early times. The (OW) has a threshold
that is still substantially lower than that for (TS) and (2DOPT).

At supercritical Reynolds numbers transition can be initiated by scenarios (TS) and
(2DOPT) by an infinitesimal disturbance, since the flow is linearly unstable. Figure
22 shows that if the initial energy density is less than ≈ 6 × 10−8, then transition
via (TS) occurs earlier than via (SV) and (OW). The (2DOPT) scenario undergoes
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Figure 23. Threshold energy density for transition in Couette flow.

transition earlier than (SV) for all initial energies. If the initial energy is lower than
≈ 10−7, then (2DOPT) ‘beats’ (OW) as well.

Figure 23 plots the threshold energy density for transition in Couette flow. As in
the case of Poiseuille flow, the (OW) scenario has the lowest threshold. For the data
collected, the threshold energy density scales like approximately R−2.2, R−2.5, R−3.1

for the streamwise vortex, oblique wave, and noise scenarios respectively. The result
for (SV) corresponds to a threshold amplitude exponent of −1.1, which is close to
exponent of ≈ −1 found for streak breakdown.

Extrapolating the curves in figure 23, it appears that the threshold for the noise
scenario could be smaller than that for (SV) and (OW) when the Reynolds number
is sufficiently large. We plan on investigating this further in future work.

9. Discussion
We have investigated streak instability, a Kelvin–Helmholtz-like instability in plane

Couette and Poiseuille flow. This type of breakdown has been investigated in detail in
other flow geometries. For channel flows the instability has the following properties.

(a) Instability occurs for perturbations with streamwise wavenumbers α0 satisfying
0 < αmin < |α0| < αmax . Roughly speaking αmax is on the order of β0, the spanwise
wavenumber of the streak, and it is conjectured that αmin = o(1) as the Reynolds
number increases to ∞.

(b) The growth rate for streak breakdown increases with streak amplitude.
(c) In cases of a positive growth rate, the least-stable mode is located at the centre

of the channel and has phase velocity approximately equal to the mean velocity at
the centre of the channel.

(d) Streak breakdown is inhibited by mean shear at the centre of the channel.
This phenomenon is relevant in Couette flow, where the mean shear of the laminar
profile is 1. Streak breakdown occurs when the streak amplitude is sufficiently large
to overcome the stabilizing effects of mean shear. Due to the importance of shear in
the normal direction the streak breakdown cannot be completely characterized as a
two-dimensional Kelvin–Helmholtz instability.
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(e) For the parameter combinations considered in this paper, we find that streak
breakdown in channel flows is a fundamental-type instability.

(f) We find that threshold vortex amplitude for instability scales like R−1.6 for
1500 6 R 6 5000 in Poiseuille flow and like R−1 for 300 6 R 6 2000 in Couette flow.
The scaling result for Poiseuille flow can be explained straightforwardly by balancing
viscous dissipation with the growth rate for streak instability in the inviscid case.
For Couette flow, roughly speaking, a streak amplitude and/or a shear reduction of
O(1) is required for streak breakdown. A streamwise vortex with amplitude O(R−1) is
required to create such conditions.

Streak instability is a fundamental phase of transition initiated by streamwise
vortices, scenario (SV), and oblique waves, scenario (OW). The threshold energy
for transition in Poiseuille flow at subcritical Reynolds numbers for these scenarios
is at least two orders of magnitude lower than that for transition initiated by
Tollmien–Schlichting waves, scenario (TS), and an order of magnitude lower than
that for transition initiated by two-dimensional optimals, scenario (2DOPT). Even
the threshold for transition initiated by random noise is lower than that for (TS). The
time scale for scenarios (SV) and (OW) is longer than those for (TS) and (2DOPT).
However, as the initial disturbance energy is increased the time for transition for
scenarios (SV) and (OW) decreases rapidly. When transition time is taken into
account, our results show that the threshold energy required for transition at a
given time for (SV) and (OW) is lower than that for (TS) and (2DOPT) R = 1500.
As the Reynolds number increases to R = 5000, (2DOPT) and (TS) become more
competitive with the (SV) scenario. The (OW) scenario has the lowest threshold at a
given time; it is at least an order of magnitude lower than that for (2DOPT) and two
orders of magnitude lower than that for (TS) for for R = 1500 and R = 5000. The
(TS) and (2DOPT) become more competitive at supercritical Reynolds numbers.

The (TS) scenario is competitive with (SV) and (OW) in the temporal boundary
layer (Schmid, Reddy & Henningson 1996). In the temporal boundary layer the
Reynolds number increases in the downstream direction. In calculations done in that
geometry, scenario (OW) has the lowest threshold, followed by (TS) and (SV). This
is consistent with results of Chang & Malik (1994), who find that the threshold am-
plitude for scenario (OW) in a supersonic boundary layer is two orders of magnitude
lower than that for (TS).

Streak breakdown is necessary but not sufficient for transition to occur in scenarios
(SV) and (OW). A goal of future work is to investigate the final stages of transition in
these scenarios. A lead in this direction may be provided by recent work by Hamilton
et al. (1995), who present a model of a self-sustaining cycle in turbulent channel flow.
This cycle consists of streak formation from streamwise vortices, streak breakdown
and vortex regeneration from the direct nonlinear interaction of the streak instability
eigenmode. They conclude that the time scales for the various phase must match for
self-sustainment.

A question that we have not addressed to this point is: Which scenario is most
likely to take place at subcritical Reynolds numbers? In general, disturbances are
random and not in the form of optimal streamwise vortices, oblique waves, Tollmien–
Schlichting waves, or optimal two dimensional disturbances. What mechanisms de-
scribe transition at subcritical Reynolds numbers initiated by random noise? Answer
to these questions are beyond the scope of the present paper.

The noise scenario was investigated previously by Kim & Moser (1989), who
considered transition in Poiseuille flow at R = 10 000. At this Reynolds number, theory
predicts that the subharmonic-type instability of the (TS) scenario is more dominant
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Figure 24. Energy in spanwise, streamwise, and oblique components in a simulation of transition
initiated by random noise. Initially there is energy in the modes with |α| 6 2 and |β| 6 2. The initial
energy density is 2× 10−4 and transition occurs at t ≈ 100.

than the fundamental-type instability. However, in experiments the fundamental-type
instability is found to dominate. The purpose of their paper was to explain the
discrepancy between theory and experiment. They found that the initial stages of
transition were explained by linear theory. The energy in the streamwise mode (1, 0)
increased due to the linear instability and was the dominant contribution to the total
energy. The energy in the spanwise modes initially increased due to transient effects,
then decayed slowly. At a later time, t ≈ 2500, they found exponential growth in the
fundamental instability modes. They found that nonlinear interactions between the
spanwise modes and the streamwise mode (1, 0) was responsible for the dominance
of the fundamental-type instability over the subharmonic-type instability. A similar
conclusion is reached by Singer, Reed & Ferziger (1989).

The situation appears to be different at subcritical Reynolds numbers. Figure 24
plots the energy in streamwise, spanwise, and oblique components in a simulation of
transition initiated by random noise in Poiseuille flow at R = 1500. In this simulation
transition occurs at t ≈ 100. In contrast to the case of R = 10 000, the the energy
in the spanwise modes is significantly greater than that in (1, 0), the linearly unstable
mode, at early times.

The results in figure 24 suggest that the breakdown in the random noise scenario
may be similar to the (SV) scenario. However, examining the energy in (1, 0) and (1, 1)
and looking at the flow fields, one cannot conclude that a pure streak breakdown as
discussed in this paper takes place. We have performed preliminary computations to
determine the contributions to the rate of change of energy in the spanwise mode
(0, 1). The expression for rate of change of energy consists of a linear interaction
term (with the laminar profile), a modified mean flow interaction term (with the
modified flow in (0, 0)), and nonlinear interaction terms with other modes (Schmid
& Henningson 1995). For scenario (SV), the main contribution to the rate of change
of energy before streak breakdown comes from the linear interaction terms. For the
noise scenario above, the main contribution until t ≈ 20 comes from the the linear and
mean flow modification terms. However after t ≈ 20, the nonlinear interaction terms
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dominate. Hence, nonlinear effects come into play much earlier than in the streamwise
vortex scenario. This is not surprising, since various modes have a relatively large
amount of energy initially. Further work is required to understand transition initiated
by random noise.
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Appendix A
To study the stability of the streak we substitute U+u, where u(x, y, z, t) = (u, v, w) is

the perturbation velocity and U is the streak profile, into the Navier–Stokes equations.
The resulting equations, given as equation (17) in Waleffe (1995a), are

ux + vy + wz = 0, (A 1)

ut +Uux +Uyv +Uzw = −px +
1

R
∆u, (A 2)

vt +Uvx = −py +
1

R
∆v, (A 3)

wt +Uwx = −pz +
1

R
∆w. (A 4)

Here, p = p(x, y, z, t) is the perturbation pressure. We reduce the above equations
to two equations by expressing the perturbation quantities in terms of the normal
velocity v and the normal vorticity η = uz − wx. The manipulations are similar to
those in the derivation of the Orr–Sommerfeld and Squire equations:

ηt +Uηx −Uzvy +Uyzv +Uyvz +Uzzw =
1

R
∆η, (A 5)

∆vt +U∆vx +Uzzvx + 2Uzvxz −Uyyvx − 2Uzwxy − 2Uyzwx =
1

R
∆∆v. (A 6)

The boundary conditions are v(y = ±1) = (∂v/∂y)(y = ±1) = η(y = ±1) = 0. The
spanwise velocity w can be eliminated from the above equations using the identity

wxx + wzz = −ηx − vyz. (A 7)

Appendix B
We present a back-of-the-envelope-type calculation showing that an initial stream-

wise vortex with normal velocity ‖V1‖ ≈ ε modifies the mean shear by a factor
≈ Cε2R2 in time t = O(R) as R →∞, where C is a constant. (See also Waleffe 1995b).
In this Appendix we define ‖ · ‖ by

‖U‖ = sup
−16y61

|U(y)|.
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We consider the evolution of a streamwise vortex in a shear flow and its effect on
the mean flow. To this end, we assume that the velocity field has the form

U(x, y, z, t) = U(y) +U0(y, t) +U1(y, t) cos(β0z),

V (x, y, z, t) = V1(y, t) cos(β0z),

W (x, y, z, t) = W0(y, t) +W1(y, t) sin(β0z)

P (x, y, z, t) = P (x) + P0(y, t) + +P1(y, t) cos(β0z).

The above expressions are truncated versions of the actual expansions used in the
direct numerical simulation in § 4 and all quantities are real. The overlined quantities
correspond to the laminar flow. The term U0(y, t) is the mean flow modification.
It can be shown that V0(y, t) = 0 and that W1 = −(1/β0)∂V1/∂y by applying the
conservation-of-mass condition.

We substitute the above expressions for the velocity and pressure into the Navier–
Stokes equations and write the result in the form of a truncated Fourier series. The
equation for U0 is obtained from the constant term in the series

∂U0

∂t
= −1

2
V1

∂U1

∂y
+
β0

2
W1U1 +

1

R

∂2U0

∂y2
,

= −1

2
V1

∂U1

∂y
− 1

2

∂V1

∂y
U1 +

1

R

∂2U0

∂y2
,

= −1

2

∂

∂y
(U1V1) +

1

R

∂2U0

∂y2
. (B 1)

Let us consider the evolution from t = 0 to t = O(R). Streamwise velocity is created
by the lift-up mechanism. In the case of a linear evolution in inviscid flow, V1(y, t) is
constant and (Ellingsen & Palm 1975)

U1(y, t) = U1(y, 0)−U ′(y)V1(y, t)t.

If viscosity is included in the calculation, then V1(y, t) decays with rate O(1/R) as
R →∞ and the growth in the streamwise velocity is shut off at t = O(R) (Gustavsson
1991; Butler & Farrell 1992; Trefethen et al. 1993). Let us assume that ‖V1‖ ≈ ε.
From the above equation it follows that ‖U1‖ ≈ εt. Here we assume that U1(y, 0) is
small compared to the production term and that the laminar shear does not change
significantly. Hence, we have ‖U1V1‖ ≈ ε2t. We assume that the normal derivative of
U1V1 is also ≈ ε2t since U1V1 = 0 at the boundaries. (We assume that there are no
sharp gradients in U1V1.) Integrating (B 1) (ignoring the dissipation term), we have

‖U0(·, t = O(R))‖ ≈
∫ O(R)

0

ε2tdt ≈ C ′ε2R2.

Finally, taking the derivative and using the fact that U0 = 0 is zero at the
boundaries, we conclude that ∥∥∥∥∂U0

∂y

∥∥∥∥ ≈ Cε2R2. (B 2)

We have done numerical simulations with R = 500 and R = 1000 to verify the
above estimate. We find that the result is approximately valid for a wide range of
values of ε2R2; the constant C only decreases by ≈ 20% as ε2R2 increases from 0 to
100.
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